Numerical Solving of Third Degree Equation

Yotam Medini

November 19, 2009

Abstract

Dedicated to: Hillel, Roey, Tomer and Yotam. $$
\begin{equation*} \alpha x^{3}+\beta x^{2}+\gamma x+\delta=0 \quad(\text { where } \alpha \neq 0) \tag{1} \end{equation*}
$$

Given the equation
we want to find a numerical solution. Dividing by α we get

$$
x^{3}+(\beta / \alpha) x^{2}+(\gamma / \alpha) x+\delta / \alpha=0
$$

If we put

$$
b=\beta / \alpha \quad c=\gamma / \alpha \quad d=\delta / \alpha
$$

we get a simplified equation:

$$
\begin{equation*}
p(x)=x^{3}+b x^{2}+c x+d=0 \tag{2}
\end{equation*}
$$

We want to find some large enough value M such that

$$
\begin{equation*}
p(-M)=-M^{3}+b M^{2}-c M+d<0<M^{3}+b M^{2}+c M+d=p(M) \tag{3}
\end{equation*}
$$

We will show that if

$$
\begin{equation*}
M>\max (3|b|, \sqrt[2]{|3 c|}, \sqrt[3]{|3 d|}) \tag{4}
\end{equation*}
$$

Then (3) will be true. We can simply pick

$$
M=\max (3|b|, 2|c|, 2|d|)+1>\max (3|b|, \sqrt[2]{|3 c|}, \sqrt[3]{|3 d|})
$$

By the requirement (4) we are assured that

$$
M / 3>|b| \quad M^{2} / 3>|c| \quad M^{3} / 3>|d|
$$

Now

$$
\begin{aligned}
p(M) & =M^{3}+b M^{2}+c M+d \\
& \geq M^{3}-|b| M^{2}-|c| M-|d| \\
& =\left(M^{3} / 3-|b| M^{2}\right)+\left(M^{3} / 3-|c| M\right)+\left(M^{3} / 3-|d|\right) \\
& >0
\end{aligned}
$$

Similarly

$$
\begin{aligned}
p(-M) & =-M^{3}+b M^{2}-c M-d \\
& \leq-M^{3}+|b| M^{2}+|c| M+|d| \\
& =\left(|b| M^{2}-M^{3} / 3\right)+\left(|c| M-M^{3} / 3\right)+\left(|d|-M^{3} / 3\right) \\
& <0
\end{aligned}
$$

