Alps TouchPad Driver — version 0.2

Yotam Medini

December 25, 2010

Abstract

This is an informal description of the simple event-based Xorg driver for Alps touch-pad on a notebook

1 Why

Recent Linux kernel and the sophisticated X11/input synaptics driver provide many options for smart
GUI gestures. Alas, with my Umax 530T ActionBook, I found that I could do without most of the
smart features. But basic features such as smooth continuous pointer movement and simple middle button
emulation, are either hard to configure or do not work the way I wish.

Thus I have decided to dive into Synaptics’s (http://web.telia.com/~“u89404340/touchpad/) code, that
by now moved to

http://cgit.freedesktop.org/xorg/driver/xf86-input-synaptics/

and learn as much as I need. With this knowledge, I could have fun in having my own X11 input driver for
alps touch pad.

2 What

Here are the main design points:

1. Do not implement tapping.
Support emulation of middle button.
Pointer movement is independent of finger speed.

Implement with C++.

o W

Avoid floating point computations.

3 How

To simplify things, using and support only the event protocol. Here there are two categories of events:

e Mouse-like Buttons — Left and Right buttons, Up and Down states.

e Pad finger movement — With z and y pad coordinates.

There are separate C++ class handlers for each.

4 Button Handling

When middle button emulation is off, the logic is trivial. So for now, we assume middle button emulation is
active. Here are the axioms:

e Left and Right button are symmetrically treated.

e For each logical button: Left, Middle, Right — the posted events must be alternating in their Down
and up state.

e When middle button is logically Down, it will be considered UP, after both physical buttons are up.

4.1 When is Button Down?

Upon Left and Right buttons physical Down event, we spawn a timer. If it arrives before the peer button is
pressed down, we consider it a simple Left or Right button-down event.

When a physical peer button is pressed down (before the timer) within a configured time delta, we consider
this a middle-button Down event.

But if the middle-button is already logically down, we ignore this physical event.

4.2 When is Button Up?

This is slightly more complicated. Say we got a physical S-button Up event, where S is Left or Right. If
the logical button reflecting the physical button is down, then we consider it S-Button logical Up event.

Otherwise, we must be in a state of logical middle button Down state. We consider middle button Up logical
event, only if the peer of S is already up.

4.3 Conclusions

To satisfy our requirements we need to

e Remember the physical status of the “other” peer button.
e Remember the logical status of all 3 buttons.

e When simple quick button Down and Up events come before the timer event sent after the Down event,
we have to return a pair of logical Down and Up events.

5 Touch Pad Handling

Say the pad rectangle coordinates are: [Tmin, Tmax) X [Ymin, Ymax)- The task is to map movement on the
pad to pixel movements on the screen. Here, we will deal with the x-coordinate, the y-coordinate can be
similarly treated.

Define

Te = (xmin + xmax)/Q

r= (-T'max - xmin)/Q

We want the ratio of screen change to pad change have value of F. = n./d. in the center of the pad, and a
value of F, = n./d. in the pad left and right edges. The polynomial

p(x) = alx — xc)3 +b(x — x.)

should achieve it. Differentiating we get

leading to the equations:
F.=b
F.=3ar’+0b
with the solution
a=(F.—F.)/3* b=F,
Now the polynomial looks like
p(z) = a(z —) + b(x —)
= (a(z — z)* +b)(z — z.)
= (((F. = F)3r%) (& = 20) + F.) (@ =)
= ?ﬂ“%dcde ((nede — nede)(z — 20)% + 3r’ned.) (x —)
= (A(z — z.)* + B)(z — z.)/D

where

A=n.d, —n.d, B = 3r’n.d, D = 3r%d.d,

6 Configuration

Name Number
EmulateMidButtonTime 1
{x,y}}Pad{Min,Max} 2-1-2=4
{x,y}{Center ,Edge}{Numerator ,Denominator} 2-2-2=38
{x,y}Jump 2
Total: 15
Here they are explicitly with their default values (DV).
Name DV Comment
EmulateMidButtonTime 75 Milliseconds between right and left clicks, 0 for no emulation
xPadMin 130 Pad left edge
xPadMax 840 Pad right edge
yPadMin 130 Pad top edge
yPadMax 640 Pad bottom edge
xCenterNumerator 1 n, for x axis
xCenterDenominator 1 d, for z axis
xEdgeNumerator 1 n, for x axis
xEdgeDenominator 1 d for z axis
yCenterNumerator 1 n for y axis
yCenterDenominator 1 d,. for y axis
yEdgeNumerator 1 n, for y axis
yEdgeDenominator 1 d. for y axis
xJump 16 x-Jump threshold to be ignored
yJump 16 y-Jump threshold to be ignored

The configuration values may be specified in

e Configuration via udev.
e Configuration via xorg.cong.

e Configuration via hal. In recent GNU/Linux distributions this is considered obsolete.

6.1 Examples
6.2 Xorg Configuration
Here is a working example of /etc/X11/xorg.conf)

Example working on UMAX 530T ActioBook.
Section "Device"
Identifier "NeoMagic Corporation NM2160 [MagicGraph 128XD]"

Driver "neomagic"
BusID "PCI:0:2:0"
EndSection

Section "Monitor"
Identifier "Generic Monitor"
Option "DPMS"
HorizSync 31.5-48.5
VertRefresh 40-70

EndSection

Section "Screen"
Identifier "Default Screen"
Device "NeoMagic Corporation NM2160 [MagicGraph 128XD]"
Monitor "Generic Monitor"
DefaultDepth 16
SubSection "Display"

Depth 16
Modes "1024x768"
EndSubSection
EndSection

Section "InputDevice"
Identifier "Configured Mouse"

Driver "alps"

Option "CorePointer"

Option "Device" "/dev/input/mice"
EndSection

Section "ServerLayout"
Identifier "Default Layout"

Screen "Default Screen"
InputDevice "Configured Mouse"
EndSection

6.3 UDEYV configuration

The following /etc/udev/rules.d/20-xorg-alps.rules is suppose to select the driver for the AlpsPS/2
device. But it seems that once the synaptics driver is found in the function checkCoreInputDevices

of hw/xfree86/common/xf86Config.c, then it is set to handle the touchpad. THis is regardless of udev
settings. Therefore, rather than further struggling, I simplly moved it away, and used the good old xorg. conf
configuration.

Example working on UMAX 530T ActioBook.
Section "Device"
Identifier "NeoMagic Corporation NM2160 [MagicGraph 128XD]"

Driver "neomagic"
BusID "PCI:0:2:0"
EndSection

Section "Monitor"
Identifier "Generic Monitor"
Option "DPMS"
HorizSync 31.5-48.5
VertRefresh 40-70

EndSection

Section "Screen"
Identifier "Default Screen"
Device "NeoMagic Corporation NM2160 [MagicGraph 128XD]"
Monitor "Generic Monitor"
DefaultDepth 16
SubSection "Display"

Depth 16
Modes "1024x768"
EndSubSection
EndSection

Section "InputDevice"
Identifier "Configured Mouse"

Driver "alps"

Option "CorePointer"

Option "Device" "/dev/input/mice"
EndSection

Section "ServerLayout"
Identifier "Default Layout"

Screen "Default Screen"
InputDevice "Configured Mouse"
EndSection

6.4 HAL Configuration

Here is a configuration example that I used ti use with the (buy now obsolete) HAL system. It was expected
to be placed in

/usr/share/hal/fdi/policy/20thirdparty/12-x11-alps.fdi
in hal’s (.£di) syntax.

<?xml version="0.1" encoding="I1S0-8859-1"7>
<deviceinfo version="0.2">
<device>
<match key="info.capabilities" contains="input.touchpad">
<match key="info.product" contains="AlpsPS/2 ALPS">

<merge key="input.xll_driver" type="string">alps</merge>
<merge key="input.x11l_options.EmulateMidButtonTime" type="string">75</merge>
<merge key="input.x11l_options.xPadMin" type="string">130</merge>
<merge key="input.x1l_options.xPadMax" type="string">840</merge>
<merge key="input.x11_options.xCenterNumerator" type="string">1</merge>
<merge key="input.x11l_options.xCenterDenominator" type="string">1</merge>
<merge key="input.x1l_options.xEdgeNumerator" type="string">1</merge>
<merge key="input.x11_options.xEdgeDenominator" type="string">1</merge>
<merge key="input.x11l_options.xJump" type="string">16</merge>
<merge key="input.x1l_options.yPadMin" type="string">130</merge>
<merge key="input.x11l_options.yPadMax" type="string">640</merge>
<merge key="input.x11l_options.yCenterNumerator" type="string">1</merge>
<merge key="input.x1l_options.yCenterDenominator" type="string">1</merge>
<merge key="input.x11_options.yEdgeNumerator" type="string">1</merge>
<merge key="input.x11l_options.yEdgeDenominator" type="string">1</merge>
<merge key="input.xl1l_options.yJump" type="string">16</merge>

</match>
<!--
For other possible options, check CONFIGURATION DETAILS in alps source
-—>

</match>

</device>
</deviceinfo>

Note: Such configuration options used to be placed in some section inside /etc/X11/xorg. conf.

7 Who is Calling us Anyway?

This section started in the quest to find out who is calling our input routine Alps::sReadInput. More
embarrassingly, in debugging phase, why aren’t we being called.

Upon initialization, we set the field of IDevPtr: :read_input with our static Alps: :sReadInput(...) func-
tion.

Following is the assumed calling stack. In small type, the callback setting functions.

Function File

xf86SigioReadInput | hw/xfree86/common/xf86Events.c
xf86AddEnabledDevice hw/xfree86/common/xf86Events.c
xf86InstallSIGIOHandler | hw/xfree86/os-support/shared/sigio.c
xf86SIGIO hw/xfree86/os-support/shared/sigio.c

8 Live Configuration

Similar to the inspiring synaptics driver, this driver allows for parameters configuration while running. This
is implemented by

e Putting the parameters in shared memory (like synaptics does).

e Using a alps-cfg.py Python (and PyGtk) script that controls these parameters.

This driver feature can be canceled at compile time by defining the C/C++ compiler flag ~-DNO_SHM=1.

The alps-cfg.py tool can work both in command-line mode or via GUI. See its options by entering:

alps-cfg.py --help

9 Build & Install

In order to build, you may need to pre-install the following packages:
g+, make, automake, x11proto-input-dev, xserver-xorg-dev, xutils-dev.

To build issue the following:

$./autogen.sh
$ make

To install, issue (with root privileges):

$ cp src/.libs/alps_drv.so /usr/lib/xorg/modules/input
$ cd /usr/lib/xorg/modules/input

$ strip alps.drv.so

$ mv synaptics_drv.so synaptics_drv-inactive.so

Also edit /etc/X11/xorg.conf to set the Driver of the "InputDevice" section, see 6.2.

	Why
	What
	How
	Button Handling
	When is Button Down?
	When is Button Up?
	Conclusions

	Touch Pad Handling
	Configuration
	Examples
	Xorg Configuration
	UDEV configuration
	HAL Configuration

	Who is Calling us Anyway?
	Live Configuration
	Build & Install

